Average Bank Balance

An amount of money A_0 compounded continuously at interest rate r increases according to the law:

$$A(t) = A_0 e^{rt}$$
 (t=time in years.)

- a) What is the average amount of money in the bank over the course of T years?
- b) Check your work by plugging in $A_0 = \$100, r = .05$ and T = 1; does the result seem plausible?

Average Bank Balance

An amount of money A_0 compounded continuously at interest rate r increases according to the law:

$$A(t) = A_0 e^{rt}$$
 (t=time in years.)

- a) What is the average amount of money in the bank over the course of T years?
- b) Check your work by plugging in $A_0 = \$100$, r = .05 and T = 1; does the result seem plausible?

a) Average =
$$\frac{1}{T-0} \int_{0}^{T} A(t) dt$$

= $\frac{1}{T} \int_{0}^{T} A_{0}e^{rt} dt$
= $\frac{A_{0}}{T} \left(\frac{e^{rt}}{r}\right) \int_{0}^{T} dt$
= $\frac{A_{0}}{Tr} \left(e^{Tr} - e^{0}\right)$
= $\frac{A_{0}}{Tr} \left(e^{Tr} - 1\right)$

b) Average =
$$\frac{100}{1(0.05)} (e^{1(0.05)} - 1)$$

= $2000 (0.05127)$
= 102.54

A simple interest over a year would yield 100(1+0.05) = 105, so it is reasonable that the average would be 102.54.